Example 2: A Mixed Number Is a Sum

Use the number line model shown below to explain and write the opposite of $2 \frac{2}{5}$ as a sum of two rational numbers.

The opposite of a sum (top single arrow pointing left) and the sum of the opposites correspond to the same point on the number line.

Exercise 2

Rewrite each mixed number as the sum of two signed numbers.
a. $-9 \frac{5}{8}$
b. $-2 \frac{1}{2}$
c. $8 \frac{11}{12}$

Exercise 3

Represent each sum as a mixed number.
a. $-1+\left(-\frac{5}{12}\right)$
b. $\quad 30+\frac{1}{8}$
c. $-17+\left(-\frac{1}{9}\right)$

Exercise 4

Mr. Mitchell lost 10 pounds over the summer by jogging each week. By winter, he had gained $5 \frac{1}{8}$ pounds. Represent this situation with an expression involving signed numbers. What is the overall change in Mr. Mitchell's weight?

Exercise 5

Jamal is completing a math problem and represents the expression $-5 \frac{5}{7}+8-3 \frac{2}{7}$ with a single rational number as shown in the steps below. Justify each of Jamal's steps. Then, show another way to solve the problem.
$=-5 \frac{5}{7}+8+\left(-3 \frac{2}{7}\right)$
$=-5 \frac{5}{7}+\left(-3 \frac{2}{7}\right)+8$
$=-5+\left(-\frac{5}{7}\right)+(-3)+\left(-\frac{2}{7}\right)+8$
$=-5+\left(-\frac{5}{7}\right)+\left(-\frac{2}{7}\right)+(-3)+8$
$=-5+(-1)+(-3)+8$
$=-6+(-3)+8$
$=(-9)+8$
$=-1$

